Cold argon-oxygen plasma species oxidize and disintegrate capsid protein of feline calicivirus
نویسندگان
چکیده
Possible mechanisms that lead to inactivation of feline calicivirus (FCV) by cold atmospheric-pressure plasma (CAP) generated in 99% argon-1% O2 admixture were studied. We evaluated the impact of CAP exposure on the FCV viral capsid protein and RNA employing several cultural, molecular, proteomic and morphologic characteristics techniques. In the case of long exposure (2 min) to CAP, the reactive species of CAP strongly oxidized the major domains of the viral capsid protein (VP1) leading to disintegration of a majority of viral capsids. In the case of short exposure (15 s), some of the virus particles retained their capsid structure undamaged but failed to infect the host cells in vitro. In the latter virus particles, CAP exposure led to the oxidation of specific amino acids located in functional peptide residues in the P2 subdomain of the protrusion (P) domain, the dimeric interface region of VP1 dimers, and the movable hinge region linking the S and P domains. These regions of the capsid are known to play an essential role in the attachment and entry of the virus to the host cell. These observations suggest that the oxidative effect of CAP species inactivates the virus by hindering virus attachment and entry into the host cell. Furthermore, we found that the oxidative impact of plasma species led to oxidation and damage of viral RNA once it becomes unpacked due to capsid destruction. The latter effect most likely plays a secondary role in virus inactivation since the intact FCV genome is infectious even after damage to the capsid.
منابع مشابه
Feline calicivirus capsid protein expression and capsid assembly in cultured feline cells.
The capsid protein of feline calicivirus (FCV) was expressed by using plasmids containing cytomegalovirus, simian virus 40, or T7 promoters. The strongest expression was achieved with the T7 promoter and coinfection with vaccinia virus expressing the T7 RNA polymerase (MVA/T7pol). The FCV precursor capsid protein was processed to the mature-size protein, and these proteins were assembled in to ...
متن کاملStructural insights into calicivirus attachment and uncoating.
The Caliciviridae family comprises positive-sense RNA viruses of medical and veterinary significance. In humans, caliciviruses are a major cause of acute gastroenteritis, while in animals respiratory illness, conjunctivitis, stomatitis, and hemorrhagic disease are documented. Investigation of virus-host interactions is limited by a lack of culture systems for many viruses in this family. Feline...
متن کاملDiscovery and Genomic Characterization of Noroviruses from a Gastroenteritis Outbreak in Domestic Cats in the US
Norovirus (NoV) RNA was detected in the stools of 6 out 14 (42.8%) 8-12-week-old cats with enteritis from a feline shelter, in New York State. Upon sequence analysis of the complete capsid, the six NoVs were found to be identical, suggesting the spread of a unique NoV strain in the shelter. The full-length genomic sequence (7839 nt) of one feline NoV, CU081210E/2010/US, was determined. In the c...
متن کاملConformational changes in the capsid of a calicivirus upon interaction with its functional receptor.
Nonenveloped viral capsids are metastable structures that undergo conformational changes during virus entry that lead to interactions of the capsid or capsid fragments with the cell membrane. For members of the Caliciviridae, neither the nature of these structural changes in the capsid nor the factor(s) responsible for inducing these changes is known. Feline junctional adhesion molecule A (fJAM...
متن کاملFeline Calicivirus Can Tolerate Gross Changes of Its Minor Capsid Protein Expression Levels Induced by Changing Translation Reinitiation Frequency or Use of a Separate VP2-Coding mRNA
Caliciviruses use reinitiation of translation governed by a 'termination upstream ribosomal binding site' (TURBS) for expression of their minor capsid protein VP2. Mutation analysis allowed to identify sequences surrounding the translational start/stop site of the feline calicivirus (FCV) that fine tune reinitiation frequency. A selection of these changes was introduced into the infectious FCV ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2018